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ABSTRACT 

Traffic monitoring is the centerpiece of congestion mitigation and traffic management. Whilst 

surveillance technologies have matured enough to provide informative depiction for the traffic, 

the current state-of-the-art systems cannot support immediate congestion problems. Proactive 

congestion mitigation requires a) real-time surveillance for traffic parameters, b) prediction for 

imminent congestion onset, in order to c) inform responsible parties to take immediate actions 

to prevent congestion. The proposed congestion mitigation approach is based on the premise 

that a short time analysis (1-5 minutes) will be sufficient to manage the congestion. We foresee 

that using a “flock” of interconnected, self-managed drones, can establish a deployable system 

to perform immediate monitoring/assessment for traffic conditions to infer if congestion is 

approached. 

To detect vehicles, a faster technique of Convolutional Neural Network (CNN) called YOLOv3 is 

used. In this technique, a single neural network is used to the full image which divides the 

image into regions and predicts bounding boxes and probabilities for each region. Then these 

bounding boxes are weighted by the predicted probabilities. This technique requires huge 

computational power and therefore, GPUs are used to process the videos recorded by drones’ 

cameras. By calibrating the camera using real values compared to their apparent values in 

images, the detected vehicles can be tracked. The targeted feature (herein, features correlated 

to traffic congestion) were reproduced utilizing a traffic simulation model. The proposed 

methodology was tested by collecting and investigating video images from drones. 

The project, if continued further, has the potential to advance the state of proactive traffic and 

congestion management by embedding a distributed, simulation-based traffic state prediction 

system within the integrated drone surveillance software to enable congestion mitigation 

actions to be undertaken before congestion happens rather than after traffic flow has already 

broken down. 

Keywords: 

Traffic Management, Camera Calibration, Object Detection, YOLO, GPU Computation, Drone, 

Real-time Surveillance, Congestion Mitigation 
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EXECUTIVE SUMMARY 

There are attempts being made at creating next generation advanced traffic management 

systems that provide for proactive system management based on remote surveillance. 

However, the proactive capabilities are yet to be fully realized. The current vision is focused on 

permanent surveillance systems, traffic management center-based management, and control 

software systems. The vision of this project differs in that it seeks to develop a dynamic system 

that uses a fleet of drones to create an on-demand, flexible surveillance network with 

distributed state prediction. Potential uses include special events, evacuation management, 

and even supplemental, re-deployable support in urban areas with some level of permanent 

surveillance infrastructure. 

Remote imagery has recently been extensively used as a mean of characterizing traffic 

properties. Existing techniques relay only on forward image analysis by tracing the targeted 

feature in the image pixel by pixel. This framework requires immense computational 

capabilities that requires strong processors like GPUs. Therefore, a faster neural network 

method called YOLOv3 was used along with Nvidia GPU through CUDA C++ to detect vehicles. In 

other Convolutional Neural Network (CNN) methods, thousands of neural networks are 

required for a single image. However, YOLOv3 technique requires only a single network 

evaluation which makes it much faster. In this approach, drones record and transfer the current 

traffic flow to the computational station that determines its characteristics. This functionality is 

realized by incorporating short-term prediction algorithms into the system. Then it provides 

accurate predictions of the dynamic traffic conditions with available computational power. The 

real properties of the traffic are estimated by calibrating the used cameras via analogy between 

some lengths in both real scene and recorded video. The calibrated camera can estimate the 

location and velocity of detected vehicles. The traffic prediction elements include both simple 

time series-based forecast methods along with context-based models. The information in turn 

feeds into a traffic management and control simulation model that enables real-time, proactive 

management and control actions. Enabling an immediate mitigation sensing model utilizing the 

drone swarm implicitly requires: a) good modeling for the traffic bottlenecks to characterize 

features correlated with congestion onset, and b) an in-field intelligent reconnaissance device 

that can recognize these features when present. 

This project aims to advance the field of real-time traffic condition monitoring by developing a 

rapidly deployable and dynamically flexible detection system using, as mentioned above, 

interconnected, self-managed swarm of drones, and by developing a robust, simulation-based 

traffic state analysis and prediction system. These contributions will enable effective real-time 

traffic management and congestion mitigation. 

For future developments, the newly developed YOLOv4 will be used to achieve faster and more 

accurate detection. Also, more powerful GPU cards will be tested to approach real-time 

detection with the required efficiency. 

viii 
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1. PROPLEM DESCRIPTION 

Traffic management is the primary key to handling and solving different traffic problems. It can 

also be used to protect transportation infrastructure from possible accidents. Remote 

surveillance can be used for this purpose using drones or fixed cameras. Images captured from 

these cameras are analyzed to get the properties of the observed traffic. An image of a camera 

represents a scaled flat view of the real street. Every point in the real scene is represented as a 

pixel on the image. However, getting detailed information and dimensions from this image 

about the real scene is not an easy task because of the image distortion that occurs due to 

many factors. The distortion factors include the height of the camera, the camera’s resolution 

and focal properties, and the camera orientation. A simple mathematical model is used to 

estimate these image distortion factors and hence, construct the necessary formula to relate 

the coordinates of the real objects to their respective locations on the image. The model 

estimation of the mapping formula was experimentally verified. After estimating the real-world 

coordinates from the camera image, vehicle detection is conducted to determine the density of 

traffic in each lane. By using YOLOv3 technique developed by Redmon et al. (2018), vehicles can 

be detected with reasonable time and good accuracy. 

2. LITERATURE REVIEW 

For the purpose of observing and analyzing traffic there are two main problems: calibrating 

cameras and detecting vehicle. The used cameras are mainly fixed surveillance cameras. The 

calibration is usually done with the help of some features of the real scene and their 

corresponding in the video images. For example, the usage of vanishing point is commonly used 

(Schoepflin et al., 2003; Cathey et al., 2003; Grammatikopoulos et al., 2005; and Dubská et al., 

2014). It is also possible to combine it with some other measurements as (Wang et al., 2007) 

used two parallel lane-marking lines with known lane width, and either the camera height or 

the length of a lane-marking line parallel to the road to calibrate cameras. These calibration 

methods were used to recover the focal length, the pan angle, the tilt angle, and the camera 

height. Detection of vehicles can be done by many methods. Grammatikopoulos et al. (2005) 

used blob detection while Dubská et al. (2014) used background modeling and foreground 

detection. 

3. DRONES AND PERCHING MECHANISM 

The drones were equipped with a perching mechanism that allows the drone to land on vertical 

walls or upside down under horizontal surfaces. Perching enables the drones to shut down their 

power-consuming motors, thereby allowing the cameras to acquire video over an extended 

period. The perching mechanism consisted of a small lift sucking solenoid electromagnet that 

was able to hold 0.5 kg. The electromagnet weight was 15 g and the input volt was 5-12 DC. To 

resist the high temperature produced by the electromagnet wire, the framework was made 

from nylon plastic which had a high temperature resistance and was covered by a steel box. It 

9 
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should be noted that the electromagnet had to be light weight so the drone could easily fly. The 

main advantage of an electromagnet over a permanent magnet was that the magnetic field 

could be quickly changed by controlling the amount of electric current in the winding. However, 

unlike a permanent magnet that needs no power, an electromagnet required a continuous 

supply of current to maintain the magnetic field. The second part in the perching mechanism 

was the mini relay wireless switch with remote control to allow opening and closing the 

electromagnet field. The Working Voltage was DC3.5V-DC12V and Max Load was 1A. The RF 

remote control is adopted as RF technology which provides a very stable signal. Moreover, 

signals of the wireless RF switch could pass through walls, floors, and doors steadily. Drone 

flights can be controlled by a receiver from any place within a reliable distance with maximum 

range up to 164 ft. (50 m) with no obstacles. This proposed perching mechanism is very small in 

size, flexible in operation, and with high sensitivity and low power consumption. The 

electromagnet, mini relay, and drone used to make the sticky mechanism are shown in Figure 1. 

To validate our perching mechanism, a field experiment was conducted at the University of 

Alabama at Birmingham (UAB) campus. The goal from this experiment was to make the drone 

stick to common steel structures found along streets like light columns, advertisement boards, 

traffic light columns, etc. Figure 2 shows a picture of the drone sticking to steel structures in a 

horizontal position. 

Figure 1. (a) Electromagnet, (b) Mini relay wireless switch, and (c) Drone. 

10 
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Figure 2. Drone sticking to a steel structure to monitor traffic. 

4. ASSUMPTIONS AND FORMULA 

The following assumptions underlie the image processing formula: 

1. the camera is not moving, 

2. the image is received on a flat surface, and 

3. the real scene is flat ground. 

As shown in Figure 3Error! Reference source not found., the camera can detect a limited area 

depending on its properties, position, and orientation. The relations between the coordinates 

on the image and the real coordinates of the observed area can be inferred using simple 

geometry. There are seven parameters that control these relationships: the camera orientation 

(3 parameters), the size of the camera’s image (2 parameters), the height of the camera’s lens 
(1 parameter), and its focal length (1 parameter). 

11 
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Figure 3. Geometry of camera observation. 

According to these assumptions and by using analytical geometry, the real coordinate of any 

point related to an origin associated with the camera can be estimated. Considering a global 

coordinate system on the ground where the origin point is the intersection of the ground plane 

with a line perpendicular to it passing through the lens, the general equation of the image plane 

is defined as follows: 

𝑎𝑥 + 𝑏𝑦 + 𝑧 + 𝑑 = 0 (1) 

This equation contains three variables, a, b, and d, which define the external orientation of the 

camera and its focal length. Considering the coordinates of the origin point of the image x0, y0, 

which represent the size of camera’s image, the third coordinate of that point can be estimated 

with the aid of equation 1, and is evaluated as: 

𝑧0 = −(𝑎𝑥0 + 𝑏𝑦0 + 𝑑) (2) 

By defining the angle of θ with x-axis that represents the projection of the lower edge of image 

on ground, this angle defines the internal rotation of the camera, the equation of that edge is 

represented in these equations: 

𝑥−𝑥0 𝑦−𝑦0 𝑧+𝑎𝑥0+𝑏𝑦0+𝑑 
= = 

cos 𝜃 sin 𝜃 −(𝑎 cos 𝜃+𝑏 sin 𝜃) 
(3) 

𝑥 = 𝑥0 + cos 𝜃 𝑡 (4.a) 

𝑦 = 𝑦0 + sin 𝜃 𝑡 (4.b) 

12 
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𝑧 = −(𝑎𝑥0 + 𝑏𝑦0 + 𝑑) − (𝑎 cos 𝜃 + 𝑏 sin 𝜃)𝑡 (4.c) 

The last parameter is the height of the camera’s lens zl. 

Using these equations and definitions, the line passing through the lens perpendicular to the 

image plane is defined by these equations: 

𝑥 𝑦 
= = 𝑧 − 𝑧𝑙 (5)

𝑎 𝑏 

𝑥 = 𝑎𝑡 (6.a) 

𝑦 = 𝑏𝑡 (6.b) 

𝑧 = 𝑧𝑙 + 𝑡 (6.c) 

Considering any point on the ground with coordinates xg and yg, the line passing through this 

point and lens point is defined by these equations: 

𝑥 𝑦 𝑧−𝑧𝑙 = = (7)
𝑥𝑔 𝑦𝑔 −𝑧𝑙 

𝑥 = 𝑥𝑔𝑡 (8.a) 

𝑦 = 𝑦𝑔𝑡 (8.b) 

𝑧 = 𝑧𝑙 − 𝑧𝑙𝑡 (8.c) 

By using these equations with the equation of the image plane, the coordinates of the 

projection of that ground point on image plane are defined as follows: 

𝑧𝑙+𝑑 
𝑥𝑖 = − 𝑥𝑔 (9.a) 

𝑎𝑥𝑔+𝑏𝑦𝑔−𝑧𝑙 

𝑧𝑙+𝑑 
𝑦𝑖 = − 𝑦𝑔 (9.b) 

𝑎𝑥𝑔+𝑏𝑦𝑔−𝑧𝑙 

𝑎𝑥𝑔+𝑏𝑦𝑔+𝑑 
𝑧𝑖 = 𝑧𝑙 (9.c) 

𝑎𝑥𝑔+𝑏𝑦𝑔−𝑧𝑙 

The next step is to calculate the distances between that projection and the origin point of the 

image with respect to the lower edge of image defined by equations 3 and 4, these distances h 

and v can be estimated as follows: 

𝐶ℎ𝑥𝑥𝑔+𝐶ℎ𝑦𝑦𝑔+𝐶ℎ
ℎ = (10.a)

𝐷ℎ(𝑎𝑥𝑔+𝑏𝑦𝑔−𝑧𝑙) 

𝐶𝑣𝑥𝑥𝑔+𝐶𝑣𝑦𝑦𝑔+𝐶𝑣 
𝑣 = (10.b)

𝐷𝑣(𝑎𝑥𝑔+𝑏𝑦𝑔−𝑧𝑙) 

where: 

𝐶ℎ𝑥 = [(𝑎2 + 1) cos 𝜃 + 𝑎𝑏 sin 𝜃][𝑎𝑥0 + 𝑧𝑙 + 𝑑] + [(𝑏2 + 1) sin 𝜃 + 𝑎𝑏 cos 𝜃]𝑎𝑦0 (11.a) 

13 
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𝐶ℎ𝑦 = [(𝑎2 + 1) cos 𝜃 + 𝑎𝑏 sin 𝜃]𝑏𝑥0 + [(𝑏2 + 1) sin 𝜃 + 𝑎𝑏 cos 𝜃][𝑏𝑦0 + 𝑧𝑙 + 𝑑] (11.b) 

𝐶ℎ = − {[(𝑎2 + 1) cos 𝜃 + 𝑎𝑏 sin 𝜃]𝑥0 + [(𝑏2 + 1) sin 𝜃 + 𝑎𝑏 cos 𝜃]𝑦0}𝑧𝑙 (11.c) 

𝐷ℎ = −√(𝑎2 + 1) cos2 𝜃 + 2 𝑎𝑏 sin 𝜃 cos 𝜃 + (𝑏2 + 1) sin2 𝜃 (11.d) 

𝐶𝑣𝑥 = 𝑎𝑦0 cos 𝜃 − (𝑎𝑥0 + 𝑧𝑙 + 𝑑) sin 𝜃 (11.e) 

𝐶𝑣𝑦 = (𝑏𝑦0 + 𝑧𝑙 + 𝑑) cos 𝜃 − 𝑏𝑥0 sin 𝜃 (11.f) 

𝐶𝑣 = (𝑥0 sin 𝜃 − 𝑦0 cos 𝜃)𝑧𝑙 (11.g) 

(𝑎2+1) cos2 𝜃+2 𝑎𝑏 sin 𝜃 cos 𝜃+(𝑏2+1) sin2 𝜃 
𝐷𝑣 = −√ (11.h)

𝑎2+𝑏2+1 

The final step is estimating the real coordinates using the distances from the image using these 

equations: 

𝐴+𝐶1ℎ+𝐶2𝑣 
𝑥𝑔 = 𝑧𝑙 (12.a) 

𝑇+𝐶5 ℎ+𝑅 𝐶6𝑣 

𝐵+𝐶3ℎ+𝐶4𝑣 
𝑦𝑔 = 𝑧𝑙 (12.b) 

𝑇+𝐶5 ℎ+𝑅 𝐶6𝑣 

where: 

𝐴 = √1 + 𝐸2 cos2(𝜑 − 𝜃) 𝑥0 (13.a) 

𝐵 = √1 + 𝐸2 cos2(𝜑 − 𝜃) 𝑦0 (13.b) 

𝑇 = √1 + 𝐸2 cos2(𝜑 − 𝜃) (𝑎𝑥0 + 𝑏𝑦0 + 𝑧𝑙 + 𝑑) = √1 + 𝐸2 cos2(𝜑 − 𝜃) (𝑧𝑙 − 𝑧0) (13.c) 

𝐶1 = cos 𝜃 (13.d) 

1
𝐶2 = sin(𝜑 − 𝜃) cos 𝜑 − √1 + 𝐸2 cos(𝜑 − 𝜃) sin 𝜑 (13.e) 

√1+𝐸2 

𝐶3 = sin 𝜃 (13.f) 

1
𝐶4 = sin(𝜑 − 𝜃) sin 𝜑 + √1 + 𝐸2 cos(𝜑 − 𝜃) cos 𝜑 (13.g)

√1+𝐸2 

𝐶5 = 𝐸 cos(𝜑 − 𝜃) (13.h) 

𝐸 
𝐶6 = sin(𝜑 − 𝜃) (13.i)

√1+𝐸2 

𝐸 = √𝑎2 + 𝑏2 (13.j) 

tan 𝜑 = 
𝑏 

(13.k)
𝑎 

A, B, T and zl are four independent coefficients while C1, C2, C3, C4, C5, and C6 are six coefficients 

that depend on the three angles that define the orientation of the camera. 
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5. CALIBRATION 

These coefficients can be evaluated using a trial-and-error method with seven real inputs and 

their corresponding measurements on the image. Different length units can be used. The 

minimum inputs are six real lengths and one of them must have a known direction: traffic 

direction or perpendicular to it, or five real lengths with two of them in two perpendicular 

directions. It is recommended to have a traffic distance, y-direction, a perpendicular distance, x-

direction, and three or more distances with no direction. Using C#, a program was made to do 

this calibration. In Figure 4, three lines in the traffic direction (green lines), a line perpendicular 

to the traffic direction (red line), and three non-directional lines (blue lines), are used for 

calibration. In Figure 5, two lines in the traffic direction and five non-directional lines are used. 

In Figure 6, a line in the traffic direction and six non-directional lines are used. However, there is 

a condition that must be considered when using two vertical or horizontal distances: they must 

not be on the same line. When calibration is done, it is displayed as “Calibrated,” the calibration 

lines can be hidden, and detection can start as illustrated in Figure 7. 

Figure 4. First set of lines used for calibration. 

15 



     

  
 

 

  

 

 

   

 

Fly-By Image Processing for Real-Time Congestion Mitigation 

Figure 5. Second set of lines used for calibration. 

Figure 6. Third set of lines used for calibration. 
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Figure 7. Calibrated view. 

6. DEFINING LANES 

After calibration, lanes must be defined to separate vehicle flows by lane. The edge of the lane 

can be pinpointed by selecting two points on it as shown in Figure 8. To avoid wrong detections 

for far areas, a tolerance is used to limit the lanes and the detection to it. For example, if a 

tolerance of 10 cm/pixel is used, detection will be limited only to the image area where the 

change in one pixel causes a difference in real distance by 10 cm or less. The higher the 

tolerance is used, the more detection area is covered. However, this will lead to higher wrong 

measurements estimated at far areas as displayed in Figure 9. 
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Figure 8. Defining lanes. 

Figure 9. Effect of changing tolerance. 

7. VEHICLE DETECTION USING YOLOV3 

Using YOLOv3, a good and accurate detection of vehicles can be achieved. This method applies 

a convolution neural network (CNN) feature recognition algorithm to the full image. The CNN 

divides the image into regions and predicts bounding boxes and probabilities for each region. 

18 



     

  
 

 

 

   

       

 

 

   

   

 

  

 

  

 

Fly-By Image Processing for Real-Time Congestion Mitigation 

These bounding boxes are weighted by the predicted probabilities. These steps are displayed in 

Figure 10Error! Reference source not found.. This technique is a fast CNN technique as it 

analyzes the image only once and ignores small objects. It is more than 1000x faster than R-

CNN and 100x faster than Fast R-CNN. YOLOv3 network has 53 convolutional layers, trained for 

160 epochs, and its batch size is 64. When a vehicle is detected, the previously calibrated 

formula is used to estimate the location and speed of it. Then location and speed of the vehicle 

are displayed on it as shown in Figure 11. Location, speed, and acceleration of each vehicle are 

calculated every frame to keep tracking each one by predicting its next position. By dividing the 

scene to lanes, the vehicles can each be assigned to its moving lane. Hence back-to-back or 

front-to-front distances between every two successive vehicles in each lane can be obtained 

easily. Different speed signs indicate vehicles moving in different directions. Figure 12, Figure 

13, and Figure 14 display some of the results of these detections. The results can be displayed 

in different distance and speed units and the lanes can be hidden. However, due to the 

moderate accuracy of detecting vehicles’ bounding boxes, the accuracy of evaluating speed is 

not accurate although the accuracy of determining location is acceptable as will be shown later. 

Figure 10. Detection using YOLOv3 (Redmon et al. 2016). 
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Figure 11. Location and speed of vehicles in m/s. 

Figure 12. Location and speed of vehicles in yd/min (Lanes hidden). 

20 



     

  
 

 

  

 

 

  

 

  

   

Fly-By Image Processing for Real-Time Congestion Mitigation 

Figure 13. Location and speed of vehicles in km/hr. 

Figure 14. Location and speed of vehicles in mph. 

To achieve faster detection, two neural networks were trained using only the five desired 

classes to be detected: car, bus, truck, motorbike, and bicycle, rather than the eighty classes of 
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the original network provided by YOLO developers. Two different models were trained: a full 

model was 5 YOLO layers and a simple model with 3 YOLO layers only. Both models were 

trained using images containing objects of the desired classes. The two models were faster than 

the original network, however, the detection efficiency was less. While the original network 

almost detects every vehicle, the trained full network detects about 50 to 70% of them and the 

simple network about 30 to 40% only. Two videos were tested using the three networks. The 

first video was recorded using a drone camera for 14th St. S. between 9th Ave. S. and 10th Ave. 

S., Birmingham, AL, had a resolution of 640*480 and the second one, used by many developers 

of vehicle detection, was 1280*720. Both videos were 30 fps. Table 1 displays the efficiency of 

the networks and ratio of detected vehicles with both videos. It is obvious that the detection is 

better for higher resolution video, and it is poor for the tiny network. To inspect the average 

required detection time for each frame to evaluate the benefits gained in exchange of 

sacrificing efficiency, Intel® Core™ i5-6300U CPU @ 2.40 GHz with four cores was used. As 

shown in Table 2 the full network is two times faster than the original one and the tiny network 

is about 20 times faster than the original one. For both videos, the required time is very close. 

By using a more powerful processor, Intel® Xeon® CPU E5-2680 v3 @ 2.50 GHz with twelve 

cores the required time reduced drastically for all networks as shown in Table 3, 25% for 

original network and 50% for the two other networks. The interesting thing is that the required 

time for both the original and full networks are the same. 

Table 1. Detection efficiency of YOLO networks used 

Network Used 640*480 video 1280*720 video 

Original YOLO 100% 100% 

Trained full network 50.5% 68.4% 

Trained tiny network 27.6% 39.2% 

Table 2. Detection time for a frame of YOLO networks used (Intel® Core™) 

Network Used 640*480 video 1280*720 video 

Original YOLO 5.2 s 5.1 s 

Trained full network 2.5 s 2.6 s 

Trained tiny network 0.26 s 0.27 s 
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Table 3. Detection time for a frame of used YOLO networks used (Intel® Xeon®) 

Network Used 640*480 video 1280*720 video 

Original YOLO 1.3 s 1.3 s 

Trained full network 1.3 s 1.3 s 

Trained tiny network 0.13 s 0.13 s 

It is better to use the original network when higher efficiency is required, low resolution video 

is used, or a strong processor is available. For other cases, trained networks will be more 

suitable. Unfortunately, even the fastest method cannot achieve real-time detection (33 ms for 

a frame) so some improved methods will be required for applications requiring near-real time 

detection. 

8. USING GPU TO ACCELERATE DETECTION 

As seen in the previous section, increasing the number of processing cores led to less detection 

time. Therefore, GPU is used to accelerate detection. GPU has a higher number of smaller cores 

so it can carry out parallel processes, like our case, more efficiently. CUDA C++ on Nvidia GPU 

cards are used to enhance the performance of detection. Dynamic Link Library (DLL) was made 

using C++ then it was used inside the original C# program. Nvidia® GeForce™ 930M with 384 

CUDA Cores was used to test the same networks and videos. Table 4 shows good improvement 

in detection speed, especially for the original and trained full network. Approaching real-time 

detection is possible with higher GPU cards like Nvidia® Tesla® P100 with 3584 CUDA Cores, 

which is under testing now. 

Table 4. Detection time for a frame of YOLO networks used (Nvidia® GeForce™ 930M) 

Network Used 640*480 video 1280*720 video 

Original YOLO 0.46 s 0.48 s 

Trained full network 0.36 s 0.40 s 

Trained tiny network 0.10 s 0.12 s 

9. VALIDATION OF ESTIMATED POSITIONS OF VEHICLES 

To validate the used program, some results were inspected to confirm the accuracy of the 

evaluation of vehicles’ positions. With the aid of some of the calibration lines whom lengths are 

known, it is possible to compare the position of a vehicle when it is at the start of the line and 
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when it is at its end, then we can get the difference between these two positions and compare 

it with the length of the calibration line. By using the first calibration line shown in Figure 15 

with length of 10.2 ft (a), a vehicle was at its start at location 83.3 ft (b) and at its end at 

location 93.1 feet (c), so the difference is 9.8 ft, another vehicle was at its start at location 82.4 

feet (d) and at its end at location 93.2 ft (e), so the difference is 10.8 ft. By using the second 

calibration line shown in Figure 16. with length of 11.2 ft (a), a vehicle was at its start at location 

133.2 ft (b) and at its end at location 121.4 ft (c), so the difference is 11.8 ft, another vehicle 

was at its start at location 133.7 ft (d) and at its end at location 123.1 ft (e), so the difference is 

10.6 ft. From these results, it is obvious that the difference between the estimated length and 

the actual length does not exceed 6% which is an acceptable accuracy. More validation was 

intended using a vehicle of known speed, but this was postponed due to the pandemic COVID-

19. 

(a) 

(b) (c) 
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(d) (e) 

Figure 15. Validation using the first calibration line. 

(a) 

(b) (c) 
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(d) (e) 

Figure 16. Validation using the second calibration line. 

10. DETECTION LIMITATIONS 

The detection is limited to vehicles of considerable size inside the image. Therefore, multiple 

videos were tested from the City of Raleigh, North Carolina to estimate the minimum size of 

detection. Starting with the video of resolution of 640*480, the smallest detection bounding 

box was 12*8 pixels as shown in Figure 17. In the second video of resolution of 720*480 

(captured for I-285 from GDOT camera 238 located near the midpoint between the Midvale 

Road underpass to the south and the Henderson Road overpass to the north) the smallest 

detection bounding box was 19*11 pixels as shown in Figure 18. In the third video of resolution 

of 1280*720, the smallest detection bounding box was 20*21 pixels as shown in Figure 19. In 

the last video of resolution of 1920*1080 using a drone flying over I-40 and I-440, the smallest 

detection bounding box was 13*14 pixels as shown in Figure 20. From these results, it was 

found that the bounding box of the vehicle must have the size of 100 pixels at least, and its 

smallest dimension must not be less than 8 pixels. Using the previous detection formula, in 

addition to the known dimensions of the smallest targeted vehicle, the properties of the 

camera, and the dimensions of the targeted area, the height and orientation of the camera can 

be estimated. 
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Figure 17. Smallest detection bounding box of 640*480 video. 

Figure 18. Smallest detection bounding box of 720*480 video. 
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Figure 19. Smallest detection bounding box of 1280*720 video. 

Figure 20. Smallest detection bounding box of 1920*1080 video. 
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11. CONGESTION DETECTION 

The final goal was to estimate the congestion on the road from the positions of observed 

vehicles. Congestion is defined by exceeding the road capacity and is characterized by high 

vehicular density and vehicle speeds that are lower than the desired speeds. When a certain 

limit of vehicle/mile/lane is reached, then the road is considered congested. The limit value of 

45 vehicle/mile/lane (28 vehicle/km/lane) which is typical for a regular roadway is considered 

as congestion in this case as shown in Figure 21.. To clarify this concept, an initial speed of 65 

mph is considered for the vehicles to develop the congestion development graphs in Figure 22. 

In the beginning, the traffic keeps its maximum speed as long as vehicular density is low. After a 

while, this density increases, and when it reaches a certain limit, the traffic starts to slow down 

gradually to keep a safe distance between vehicles. Then, the speed continues to decrease as 

the vehicular density increases until it reaches 45 vehicle/mile. This distance, with the reduced 

speed and enough minimum safe trailing distance between vehicles (2-second rule) is 

considered the congestion limit. 

Determining vehicular density from the observed segment of the road is as follows: each lane is 

considered individually, then the number of vehicles ‘n’ is counted and the distance between 

the first and last car ‘d’ is calculated, and finally vehicular density ‘VD’ is estimated using 

Formula (14). 

𝑉𝐷 = 
𝑛−1 

(14)
𝑑 

In the case of only one car in a lane, vehicular density is considered to be equal 1. Figure 21 

displays some of these results. 

Figure 21 and Figure 22 use the Highway Capacity Manual, Sixth Edition traffic models with 

remotely sensed measurements superimposed. The data plotted on these figures are from 

permanently mounted side-fire radar stations. However, these data serve to illustrate how 

macroscopic traffic stream models can be used to evaluate traffic stream flow and detect the 

onset of congestion for the location monitored by the temporary drone-based array envisioned 

by this research. Traffic state evaluation would be further enhanced by using field calibrated 

traffic stream models. Therefore, for locations that are pre-selected for drone array 

deployment, it would be advisable to deploy the drones prior to the actual event requiring 

traffic management to validate the detection and calibrate the traffic stream models that will 

be used for traffic state assessment. 
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Figure 21. Speed-Flow curve. 
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Figure 22. Congestion development with increased car numbers. 
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Figure 23. Congestion estimation. 
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12. PROGRAM FLOWCHART 

In Figure 24., the complete flowchart of the program is illustrated. 

Start

Input calibration distances

Calibrate to get
formulae's coefficients

Select lane edges
and detection tolerance

Define lanes' areas

Load previously trained
YOLOv3 network

Start monitoring stream

1
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1

Detect vehicles, assign them to lanes,
estimate location and velocity,

and predict next location

Display lane location and velocity
for each detected vehicle

Count vehicles and calculate distance
between first and last car for each lane

Evaluate vehicular density

Display congestion condition

Stream ended?

End

Yes

Next frame
No

Figure 24. Detection program flowchart. 
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13. CONCLUSIONS AND FUTURE WORK 

Cameras can be calibrated to estimate locations from its images by using real measurements. 

Then, the calibrated camera can be used to detect vehicles using YOLOv3 and estimate their 

locations with good accuracy. In detection, different types of networks can be used based on 

the required efficiency, quality of the camera, and the available processors. After that, 

congestion can be evaluated based on the distance between vehicles. To accelerate detection, 

a GPU can be used. 

For future improvements, YOLOv4 developed by Bochkovskiy et al. (2020) will be tested for 

better performance. It is described to be more efficient by its developers so it will be 

considered for future improvement. Also, different types of stronger processers will be used. 
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